DE2 Electronics 2

Tutorial Sheet 4 – Step Response and Frequency Response

(Lectures 7 - 8)

* indicates level of difficulty

1.* A first-order system has a transfer function given by:

$$H(s) = \frac{10}{0.1s + 1}$$

Derive an equation for the step response of the system. Plot the step response indicating the time that the system reaches 90% of the final value.

2.** A second-order system has a transfer function given by:

$$H(s) = \frac{512}{2s^2 + 20s + 512}$$

What is the natural frequency of the system? Work out the system's damping factor and state whether the system is under-, over-, or critically damped.

3.* For a system with transfer function as shown, write the differential equation relating the output y(t) to the input x(t).

$$H(s) = \frac{s+5}{s^2+5s+6}$$

4.** For the system in Q3, derive the frequency response of the system.